

From Risky Connection to Inclusive Protection

Children with Disabilities in Bangladesh and
Online Sexual Exploitation of Children

2026

VOICE IDENTITY project

*Identity, Diversity, and Exploitation: Navigating and
Tracing Intersectionality related to Tech-facilitated Sexual
Exploitation of Youth*

Acknowledgements and Imprint

From Risky Connection to Inclusive Protection is a four part series about the risk and protective factors of different groups of children in relation to online sexual exploitation. The reports are the outcome of the VOICE IDENTITY project, funded by the Dutch Ministry of Foreign Affairs through the Down to Zero Alliance and its programme Stepping Up the Fight Against Sexual Exploitation of Children. Additional funding for the inclusion of children with disabilities was kindly provided by the Ineke Feitz Stichting.

VOICE-IDENTITY is a project of the Down to Zero Alliance, led by Terre des Hommes Netherlands and the second phase of the VOICE study (Values, Opinions, and Insights from Children and their Caregivers about E-safety), which was a collaboration between ECPAT International, Eurochild, and Terre des Hommes Netherlands. For more information, please read the full report or accessible version:

[full report](#)

[accessible version](#)

We want to thank the data collection team in Bangladesh, who worked with great care to safeguard the wellbeing of participating children and to accommodate their different abilities. Above all, we are deeply grateful to the children, parents, and stakeholders who shared their time, experiences, and perspectives with us.

RESEARCH TEAM:

Research design by: Eva Notté, Charlotte Tierolf, Fadime Özcan, Nathalie Meurens, and Dr. Kimberley Anderson

Data collection led by: Dr. Md. Ahsan Habib and Md. Shah Moazzem Hossain

Written by: Isabella Lanza Turner, Eva Notté, Mare Metz, Yulidsa Bedoya Zúñiga

Reviewed by: Dr. Jean Elphick, Jeanne-Marie Quashie and Dr. Kimberley Anderson

Design by: Marieke de Ligt

PUBLISHED BY:

Terre des Hommes Netherlands

Grote Marktstraat 43

2511 BH The Hague

The Netherlands

<https://int.terredeshommes.nl>

SUGGESTED CITATION

Terre des Hommes Netherlands. (2026). *From Risky Connection to Inclusive Protection: Children with Disabilities and Online Sexual Exploitation of Children*. The Hague: Terre des Hommes Netherlands.

© Terre des Hommes Netherlands, 2026. All rights reserved.

Table of Contents

Acknowledgements and Imprint.....	1
Table of Contents.....	2
Introduction.....	3
Methods.....	6
Literature review.....	7
Small group interviews with children.....	8
Caregiver and stakeholder interviews.....	9
Data collection and analysis.....	9
Results.....	10
What Children With Disabilities are Doing Online.....	11
How Children with Disabilities Feel about the Online World and their Safety.....	13
Disability-Specific Usage, Risk, and Benefits.....	16
Cross-Cutting Themes.....	21
Conclusion: Layers of Risk and Protection in Children with Disabilities' Lives.....	26
Reference List.....	30

Introduction

Introduction

Children with disabilities represent one of the groups most affected by exclusion and invisibility worldwide. Globally, around 16% of the population has a disability (WHO, 2022), defined as long-term physical, mental, intellectual, or sensory impairments which, in interaction with various barriers, may hinder full and effective participation in society on an equal basis with others (United Nations, 2006). In Bangladesh, however, official data report that only 2.8% of the population (around 4.7 million people) has a disability (BBS, 2022). This discrepancy with global data could point to **underreporting and the marginalisation** of people with disabilities in the country.

In Bangladesh, as in much of the world, **cultural and religious beliefs** play a significant role in this marginalisation. Disability is often framed through stigma, shame, or pity, with some families interpreting it as divine punishment or karmic justice (Hussain & Raihan, 2022). These views contribute to people with disabilities being hidden from public life, denied access to healthcare and education, and excluded from social participation. For children, the consequences are particularly stark as only 40% of children with disabilities in Bangladesh are enrolled in formal education (BBS, 2022).

Against this backdrop, the internet can create **vital opportunities for inclusion**. Digital spaces may provide children with disabilities with entertainment, access to information, and platforms for social connection that are otherwise denied to them (ECPAT International et al., 2024). As illustrated in the documentary *The Life of Ibelin* (2023), online environments can allow children with severe disabilities to express agency, build relationships, and live meaningful lives without the barriers experienced in their offline worlds. For many children with disabilities, the internet holds similar potential for visibility and voice.

Yet, the internet also introduces **serious risks**. In Bangladesh, internet use among children is growing rapidly. About one in three children aged 5–17 is online (BBS, 2022), but children with disabilities face particular challenges. Studies show that they are more likely to struggle with recognising online risks, discerning manipulative behaviour, and protecting their privacy, which increases their exposure to harmful contact, content, and exploitation (Álvarez-Guerrero et al., 2024).

A growing concern is **online sexual exploitation of children** (OSEC), which is defined as “*all acts of a sexually exploitative nature carried out against a child that have, at some stage, a connection to the online environment*” (ECPAT International, 2016, p. 17). In other words, it concerns all exploitative sexual acts against children that are facilitated, initiated, or perpetuated through digital technologies. The exploitative nature of the sexual acts refers to taking advantage of a child in exchange for profit, power or status (Terre des Hommes Netherlands, 2023). Examples include when someone builds an online relationship with a child to engage them in offline or online sexual activities later (grooming), the production and distribution of child sexual abuse material (CSAM), live-stream sexual abuse, or coercing children to perform sexual acts in exchange for money or gifts, or a promise of such.

Previous studies have found that children with disabilities have a **higher chance of being sexually abused**, with an increased risk of being 2.2 (Murphy et al., 2006) or even ten times (Modell & Mak, 2008) more likely to be victimised. This heightened risk was also found in a study of 216 children with disabilities in Bangladesh, where half of the children had experienced sexual abuse (Ferdous et al., 2015). These heightened risks are also found online. For instance, Wells and Mitchell (2013) found that in comparison to peers without a disability, children with a disability are more likely to have unwanted sexual solicitations online (14% versus 8%).

Despite this alarming evidence, **research directly addressing the intersection of disability and OSEC is extremely limited**, particularly in low and middle income countries like Bangladesh. Children with disabilities themselves are rarely consulted, leaving their perspectives and experiences absent from the evidence base. This study seeks to address this gap by:

1. exploring how children with disabilities in Bangladesh perceive online safety and navigate risks of OSEC;
2. identifying their specific needs for protection in digital environments; and
3. highlighting the actions that caregivers, communities, and policymakers should take to ensure their safety online.

This research is part of a four-part series about the risk and protective factors of different groups of children in relation to OSEC (the **VOICE-IDENTITY project**). In focusing on different groups with specific characteristics, such as having a disability, our aim is not to reduce children to labels or to reinforce stereotypes, but to recognise that a disability can shape online experiences in specific ways. We are aware that **terminology** evolves over time and that children are always more than the categories used in this research. At the same time, identifying groups allows us to understand unique risks and protective factors, and to ensure that children's perspectives are reflected in practice, advocacy and policy. Above all, this research project centres the diverse voices and needs of children, who are more than the labels of ability or identity, so that the systems around them become more inclusive, responsive, and protective.

Methods

Methods

This study forms part of the broader **VOICE project** (2024) – *Values, Opinions, and Insights from Children and their Caregivers about E-Safety* – and its subsequent phase, **VOICE-IDENTITY** (2025): *Identity, Diversity, and Exploitation: Navigating and Tracing Intersectionality related to Tech-facilitated Sexual Exploitation of Youth*. The overall methodology was developed by Terre des Hommes Netherlands and adapted to the Bangladeshi context in collaboration with a locally-based research team. This team was led by a professor from the University of Dhaka and included professionals with extensive experience working with children with different disabilities, ensuring contextual and disability-inclusion expertise in the design and implementation of the study.

To centre the perspectives of children with disabilities, the research adopted a **qualitative design**. Data collection combined a literature review with semi-structured small-group interviews with children. In addition, their caregivers and key stakeholders were interviewed. These methods were designed to capture diverse experiences and to generate in-depth insights into both risks and protective factors related to online safety. The research protocol and tools were reviewed and approved by the Institute of Education and Research at the University of Dhaka (IERREC/Ext-4), in line with ethical standards for research with children.

As a sequel to the VOICE study (ECPAT International et al., 2024), this report compares findings of children with disabilities in Bangladesh with data from 34 Bangladeshi peers without a disability collected through three focus groups in 2023. For parents of children with a disability, it will be compared to 253 parents of children without a disability, collected through a survey in the same period. This secondary use of the VOICE data helps to contextualise the specific vulnerabilities and strengths of children with disabilities in relation to their peers and will be shown through results in boxes throughout the results.

Literature review

The literature review combined grey and academic sources, identified through search terms such as “online sexual abuse and exploitation” in combination with “children with disabilities” or specific diagnoses or impairments. Searches were conducted using Google Scholar, Google, and the Vrije Universiteit Library database. Studies were included if they focused on OSEC, online violence or safety, or internet use in relation to disability; were published from 2014 onwards; and met established credibility criteria for authority, accuracy, coverage, objectivity, date, and significance (Tyndall, 2010). Data were extracted systematically into a spreadsheet, with entries capturing each source’s focus, methodology, and key findings relevant to the research questions.

Small group interviews with children

The research team in Bangladesh contacted schools for children with disabilities in Dhaka and asked for permission to conduct small group interviews with children. First, a pilot school was chosen to test the methodology and identify any areas of improvement. In total, 25 children participated: four children with autism (CwA), three with Down syndrome (CwDS), seven with a visual impairment (CwVI), and eleven with a hearing impairment (CwHI), with an average age of 15.4 years (age range 13-20). More boys (n=19, 76%) than girls (n=6, 24%) participated, which reflected higher enrollment of boys with disabilities in schools. The research team expressed that, in this setting, girls are less likely to attend school than boys, and for girls with disabilities, it is even less likely to be enrolled in school.

Small groups of two to four children, who went to the same school and had the same type of disability, attended a small-group interview session of up to three hours, including regular breaks. The interview included diverse activities, including 1) a discussion around digital experiences, 2) teaching about online risks and OSEC through case stories, 3) an in-session survey that could be completed independently or with assistance, and 4) a creative activity based on pictures where children could build their own story about a child at risk of OSEC. The research team adapted the approach for each session, remaining flexible to make adjustments as needed (see Table 1). Each session was facilitated by a trained researcher, with a safeguarding focal point monitoring safety, assent, and wellbeing of the children and also served as the note-taker.

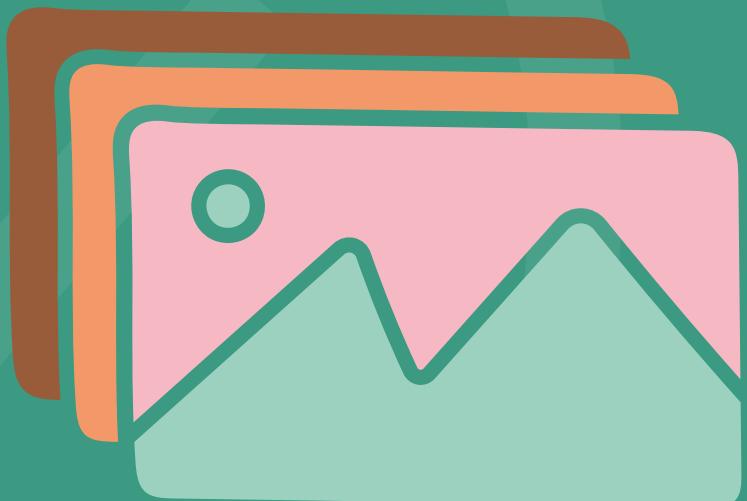
Table 1. Overview of the children sampled and adaptations/accommodations to the methodology

	Number of participants	Adaptations made to the methodology
Children with Autism	4	Activity instructions broken down into concrete steps
Children with Down syndrome	3	Simplified language Limited number of activities Limited duration of sessions
Children with Visual Impairments	7	Verbally described visual content
Children with Hearing Impairments	11	Assisted by interpreter known to the children

Caregiver and stakeholder interviews

Semi-structured, individual interviews were held with caregivers and stakeholders, following a topic guide. Online behaviour of children with disabilities, benefits and challenges, cultural and societal views of children with disabilities, and support needs were discussed. For each child included in the study, one caregiver participated, resulting in 25 caregivers, of which 88% mothers and 12% fathers. Fifteen stakeholders were included in the study who had expertise or experience in working with children with disabilities in Bangladesh. Of these, 74% were female and 26% were male, and 47% of the stakeholders had a disability themselves. They represented the educational system, disability support organisations, academia, psychologists, disability advocates, and child protection specialists.

Data collection and analysis


For all respondents, participation was voluntary, and they were reminded they could pause or quit the interviews at any time without any consequences. Consent forms were provided in written form, but read out and further explained when required, to ensure that every respondent understood what they were participating in and why.

All data was collected via audio recording with participant assent/consent, in their preferred language. The research team produced a detailed transcript for each interview, including non-verbal cues (e.g. gestures, body language, affective responses) that were essential for interpreting the communication of children, especially those who had trouble speaking or used sign language. The recordings were transcribed, pseudonymised, translated into English and thematically analysed (Braun & Clarke, 2006), using ATLAS.ti Web software. Each transcript was coded by two researchers, using a pre-determined codebook based on the research questions and the Socio-Ecological Model of Bronfenbrenner (1974), which sees child development as shaped by multiple interacting systems. We return to this model in the conclusion.

Results

Results

In the following, we start by outlining what children with disabilities are doing online and their perceptions of online safety, followed by disability-specific patterns of risk and protection for each of the sampled groups and discussing cross-cutting themes.

In this report, we use person-first language (“children with...”) across all disability groups. We are aware that terminology around disability is complex, evolving, and sometimes contested. Our intention is not to reduce children to labels, but to use clear, respectful terminology that makes differences visible for research and advocacy purposes. Children are always more than these categories, and we recognise that preferences may shift over time and across contexts. Please read our considerations below.

Medical and clinical contexts often use Autism Spectrum Disorder (ASD). To respect ongoing discussions about moving away from the term “disorder” and recognising autism as a form of neurodiversity, we use “Children with Autism.”

International guidelines recommend Down syndrome and not shorter versions like “Down’s”. We use “Children with Down Syndrome” in line with person-first language widely adopted in child rights and development work.

We acknowledge that many prefer “deaf children,” “hard of hearing children,” or more inclusive framings such as “auditory diversity,” viewing “hearing impairment” as deficit-focused. However, for consistency with person-first language and to reflect the focus of our sample, we use “Children with Hearing Impairments.”

For the same reasons, we use “Children with Visual Impairments,” while recognising preferences for terms such as “blind children”, functional descriptions such as “children who have low vision”, or more inclusive framing such as “visual diversity” to include the broad range of visual experiences and perspectives.

We understand that preferences and opinions about correct terminology may vary. By making these choices explicit, we aim to balance clarity and respect, while signalling that terminology matters and should be considered carefully.

What Children With Disabilities are Doing Online

This study specifically sampled children who were active online and interacting with others using online platforms to ensure they related to the questions, which means the findings are not generalisable to the larger population of children with disabilities in Bangladesh. The children in our sample **gained access** to social media or games at an average age of **13.8 years old** and spent an average of **4.7 hours per day online**. All children used YouTube, and most children (86%) used Facebook, which corresponds with the most popular apps that children used in Bangladesh (ECPAT International, Eurochild & Terre des Hommes Netherlands, 2024). Almost half of the

children with disabilities in our sample used online games (48%). Other apps are used by a smaller percentage, such as TikTok (14%), Instagram (14%), education app Shikho (10%), Pinterest (5%) and WhatsApp (5%).

Children were in **contact with family** (90%) or **friends** (80%) and some with **teachers** (30%). Fewer were in contact with people they solely met only (15%). They mostly discussed their studies (56%) or just talked to friends (44%), like sharing about their schedule or plans (22%) or exchanging “greetings” (22.2%). Children mostly enjoyed the **entertainment part** of the online world (videos, games, music and crafts) and the **learning component**, such as being able to keep up to date with current trends and events, recipes, or learning. Although the children didn’t always specify why, their dislikes are mostly connected to specific apps, most notably Facebook, Instagram and Tiktok, such as apps **not being accessible or “disability-friendly”¹ or not being safe**. Only one child indicated something content-related, namely *“bad videos.”²*

Children with visual (CwVI) or hearing impairments (CwHI) were the most active online, using platforms for education and socialisation (see Table 2). By contrast, Children with Autism (CwA) and Children with Down syndrome (CwDS) tended to start using the internet later (mean age ~16) and typically interacted only with family. This narrower use was sometimes protective but also limited opportunities for learning about safe digital practices.

Table 2. Overview of online behaviour per disability group

	CwHI	CwVI	CwDS	CwA
What age did you go online first?	13.5	13	13.6	16
How many hours do you spend online per day?	5	5	3.7	4.2
What apps and games do you use?				
Who do you talk to online?	Friends, Family, Teachers	Friends, Family, Teachers, People I met online	Friends, Family, Teachers	Family

- YouTube
- Instagram
- Facebook
- TikTok
- Mobile Games
- WhatsApp
- Messenger
- Shikho

1. Girl with a visual impairment, 14 years old
2. Girl with a visual impairment, 15 years old

Box A: Comparison of children with and without disabilities in Bangladesh - online behaviour

Both groups of children reported going online from early adolescence. Peers without a disability in Bangladesh typically reported first access at around 13 years of age, while children with disabilities averaged 13.8 years, though CwA began later (around 16). In comparison to the average age of 9.6 years for all VOICE 1 countries, Bangladeshi children are accessing these platforms at a later age. Children with disabilities spent more time online, an average of 4.7 hours per day compared with roughly three to four hours among children without a disability. This was particularly pronounced for CwHI and CwVI, who averaged five hours daily.

Patterns of platform use were similar across groups, with Facebook and YouTube being most popular. In the VOICE Phase 1 study, almost all children without a disability reported using YouTube (97%) and Facebook (92%), alongside TikTok (74%), Instagram (49%), and messaging platforms such as WhatsApp (41%). By contrast, in the disability-focused study, all children used YouTube (100%) and most used Facebook (86%), but far fewer engaged with TikTok (14%), Instagram (14%), or WhatsApp (5%).

Contact patterns also diverged. Among peers without a disability, 87% said they interacted with friends online, 72% with family, 43% with teachers, and 28% with people they only knew from the internet. By contrast, children with disabilities described closer reliance on family (90%) and friends (80%), with fewer mentioning teachers (30%). Still, 15% of children with disabilities reported interacting with strangers online.

How Children with Disabilities Feel about the Online World and their Safety

Children and caregivers in Bangladesh described the internet as more than a space of risk. They spoke about how it **supported learning, strengthened relationships, made daily life more convenient, and offered a sense of belonging**. Children described using YouTube or coaching apps for schoolwork and hobbies, while parents highlighted how their children learned crafts or sign language online. One mother explained, *“He learns handcrafts from Facebook or the internet,”*³ while another said, *“she watches sign language videos and other educational content, which I think is good for her.”*⁴ For many families, the internet helped fill gaps left by schools and provided tools adapted to children’s needs.

In the survey, we also asked children how they felt about online safety, in general and in relation to Online Sexual Exploitation of Children (OSEC). Two out of three children that answered the survey⁵ indicated that they **felt somewhat safe (69%)**, one said to feel **somewhat unsafe (8%)** and **three very unsafe (23%)**. CwVI were the only ones who answered why they felt unsafe. Two girls mentioning fears of misuse of what they post or share online, for instance *“tak[ing] a screenshot of a conversation, us[ing] a photo or video in a wrong way”*⁶, or that *“everything can be hacked”*⁷, as *“it is an era of AI [Artificial Intelligence].”*⁸

3. Parent of a child with a hearing impairment

4. Parent of a child with a hearing impairment

5. To save time in some of the sessions and to ensure that children had enough breaks, not all children (and none of the CwDS) answered the questions

6. Girl with a visual impairment, 15 years old

7. Girl with a visual impairment, 15 years old

8. Girl with a visual impairment, 14 years old

Children discussed which apps and platforms were safe or unsafe. **They associated apps with greater exposure to people with higher risks.** They specifically reported that they felt less safe on Facebook (77%), Instagram (15%) and social media in general (8%). Facebook was often described as unsafe, mainly because of its popularity and the ways people can make contact through friend requests. Children also mentioned risks such as being “hacked” or “trapped,” which they linked to interactive features that exist on many social media platforms. YouTube was frequently praised as the safest platform. Looking at the reasoning for other apps, YouTube might have been perceived as safer, because there is less interaction.

The children in the group interview did an exercise where various online risks, such as OSEC, were explained. The survey was conducted directly after the explanation, to ensure that children understood what OSEC was. **The answers to the question whether children felt protected from OSEC varied, and were more negative than general safety feelings online** (see Table 3). Across all children, almost two thirds (63%) said they felt unsafe, compared to 31% feeling unsafe in the general safety question. At the same time, more children also said to feel very safe (25%), where this answer was not chosen in the general safety question. Important to note is that all participants who chose the very unsafe options were girls, and the very safe options were boys. This could point to gender being an influential risk or protective factor, at least for safety perception.

Table 3. Safety Perception of Children with Disabilities

	CwHI		CwVI		CwDS	
	Safety general	Safety from OSEC	Safety general	Safety from OSEC	Safety general	Safety from OSEC
Very safe	0	4	0	0	0	0
Somewhat safe	6	2	1	0	2	0
Neutral	0	0	0	0	0	0
Somewhat unsafe	1	3	0	2	0	0
Very unsafe	1	0	2	1	0	2

Box B: Comparison of children with and without disabilities in Bangladesh - online safety perceptions

Similar to findings in the current study, feelings about safety online varied across children without disabilities. 42% of peers without disabilities in Bangladesh reported feeling neutral about it, 30% felt unsafe or very unsafe and 28% felt safe or very safe. In addition, many admitted confusion about what to do when someone bothered them online. Some knew how to block and report violations, but others felt powerless. Looking at the numbers of all children without disabilities across the 15 countries in VOICE (43% neutral, 10% unsafe, 47% safe), fewer children in Bangladesh reported feeling safe, but at the same time, fewer reported feeling unsafe, with more positioned in the **neutral middle ground**.

Interestingly, children with a disability never chose the neutral option but had **a clearer idea if they felt safe or unsafe**. In comparison they more often reported feeling safe or very safe (62%) than unsafe or very unsafe (31%), which was more positive than their peers without a disability. When asked about OSEC specifically, feelings of insecurity rose sharply: 63% said they felt unsafe. Gender differences were strong in both samples, but particularly striking among children with disabilities, where **all “very unsafe” responses came from girls**. Compared to peers without disabilities, children with disabilities expressed clearer positions about their online safety. Rather than choosing a neutral stance, they were more decisive, most often reporting feeling safe, though with significant numbers also feeling unsafe. This suggests that while children without disabilities may experience more uncertainty or ambivalence about online safety, children with disabilities perceive risks and protections in starker terms, especially when it comes to OSEC.

Disability-Specific Usage, Risk, and Benefits

Box C: Children with visual impairment (CwVI) and OSEC

Visual impairment refers to partial or complete loss of vision that cannot be fully corrected (with glasses for example) and that limits a person's ability to perform everyday activities, including communication and online interaction (World Health Organization, 2023).

Because offline environments can be particularly exclusionary, children with visual impairments often **rely more heavily on digital tools** than peers with full vision, especially for education and communication (Wrzesinska et al., 2016). Yet, this greater reliance does not translate to safety. The internet remains predominantly visual, and inaccessible design such as platforms that are **incompatible with screen-reading software, restricts independent navigation and limits access to safety features**. Doolan et al. (2024) emphasise that across disability groups, children face heightened online vulnerability due to exclusion from digital safety education, lack of accessible protective tools, and experiences of social isolation. For CwVI, these gaps mean that the very technologies intended to enable participation can also amplify risk.

Our study confirmed that accessibility barriers significantly shaped online experiences. Participants described frustration when platforms or apps were not compatible with assistive technology, preventing them from using safety features or understanding visual cues. One child commented on the potential benefits of this study, saying "*it will be great for us! We'll be able to use Facebook and everything more safely and securely*"⁹, hoping that the findings would lead to accessibility and safety improvements online.

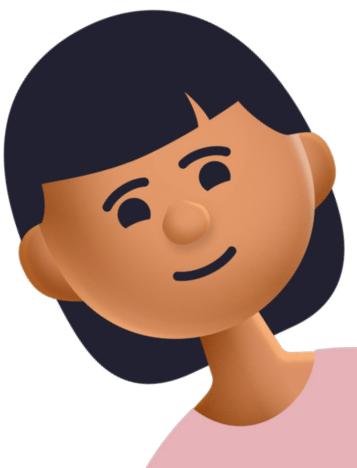
The accessibility challenges created specific risks, particularly around **verifying identities**. As one girl explained: "*We often can't see pictures. When a name matches, we tend to accept the request.*"¹⁰ In addition, another girl explained that "*since we can't see, many people could do things with our photos*"¹¹, saying that their disability makes the risk to OSEC "*much higher.*"¹² A boy had a similar concern about potential non-consensual sharing of images without him knowing: "*since we cannot see, this is a big concern for us.*"¹³ Out of all participants, only the girls with a visual impairment had experiences with online sexual risk, such as receiving "**inappropriate**"¹⁴, "**unpleasant**"¹⁵, or "**double-meaning**"¹⁶ comments and receiving "**unexpected pictures**"¹⁷ in addition to hearing about "*sending pictures in a bad way and send[ing] them back, demanding money and blackmailing the person*"¹⁸, having sent photos "*and then they edited it, and blackmailed her*"¹⁹ or "*even worse incidents.*"²⁰

The children were thus clear about the link between OSEC and having a visual impairment. The **reliance on names** rather than images made children vulnerable to impersonation (by "fake accounts") and unwanted contact. The inability to fully see hampered their capacity to detect whether shared images were being altered, misused or shared inappropriately. Others reported that inaccessibility limited not only their ability to stay safe but also their opportunity to fully enjoy or benefit from online spaces. For them, exclusion and risk were intertwined: the very tools designed to foster access simultaneously created new forms of vulnerability.

9. Boy with a visual impairment, 17 years old
10. Girl with a visual impairment, 15 years old
11. Girl with a visual impairment, 16 years old
12. Girl with a visual impairment, 16 years old
13. Boy with a visual impairment, 17 years old
14. Girl with a visual impairment, 16 years old

15. Girl with a visual impairment, 16 years old
16. Girl with a visual impairment, 15 years old
17. Girl with a visual impairment, 15 years old
18. Girl with a visual impairment, 16 years old
19. Girl with a visual impairment, 15 years old
20. Girl with a visual impairment, 15 years old

Box D: Children with hearing impairment (CwHI) and OSEC


Hearing impairment refers to partial or complete loss of the ability to hear, which can affect spoken communication, social interaction, and participation in education and online environments (World Health Organization, 2025).

CwHI are often grouped together with CwVI under the category of “**sensory impairments**”, with research showing both shared and distinct patterns of online use. Studies suggest that these children tend to spend more time online compared to other children, sometimes to the point of **excessive use** (Tuz et al., 2025). Internet access can reduce feelings of loneliness (Barak & Sadovsky, 2008), but it also intersects with elevated risks: comparative studies have shown higher levels of social isolation, lower self-esteem, and weaker interpersonal support among children with hearing impairments compared to hearing peers (Michalczik, 2021). Such vulnerabilities are significant given that **isolation and low self-esteem are recognised risk factors for grooming and online exploitation** (Aktu, 2024).

At the same time, the online world offers unique benefits. Because much online communication is text-based, **CwHI may find digital environments more accessible than face-to-face interactions** (Toofaninejad et al., 2017). Yet these opportunities are constrained when audio-based content lacks subtitles or sign-language interpretation, which is especially problematic in educational platforms (Tuz et al., 2024). Previous studies also highlight that CwHI use the internet to seek out information about their disability, sign language resources, and supportive communities (Tuz et al., 2024).

CwHI in Bangladesh reported spending a considerable amount of time online, around five hours per day. This was similar to the online use of CwVI and higher than that of CwA or CwDS. However, many participants **had not been taught a national sign language**. Instead, children and educators at the schools included in the study relied on informal sign systems or lip-reading. As a result, children’s communication skills varied, and many struggled to fully engage with text-based digital platforms.

For the CwHI in our study, **the internet did not deliver the same added benefits documented in other countries**, such as access to community or enhanced digital literacy. Instead, children’s participation remained constrained by limited communication skills, reflecting the structural gaps in education.

Box E: Children with Autism (CwA) and OSEC

Autism is a neurodevelopmental condition characterised by difficulties with social communication, restricted interests, and repetitive behaviours (Lord et al., 2018). CwA may have difficulties with learning, understanding, communicating with people outside their families, accepting change and making friends. Autism is a spectrum; therefore, children with the same diagnosis may experience very different levels of difficulties.

Being in the autism spectrum influences how children interact online and how they perceive, respond to, and manage risk. Research shows CwA are **active online users and may face heightened online safety risks compared to neurotypical peers** (Macmillan et al., 2020). They are more vulnerable to cyberbullying and harassment, and girls with autism in particular report exposure to sexual harassment and exploitation (Macmillan et al., 2022).

CwA often engage **less in peer-to-peer online communication**, which may reduce exposure to unknown perpetrators (Macmillan et al., 2020). This was also found in our sample, as CwA reported limited online contacts, often restricted to family members. Children and caregivers identified this as a protective factor. However, literature on OSEC also stresses that most perpetrators are known to the child, often within the family, meaning **low levels of external contact does not eliminate risk** (Culina, 2024). Furthermore, literature shows that children often disclose abuse to peers; therefore, interacting less with peers might be a risk in this sense.

Our findings confirm earlier studies suggesting that CwA face lower exposure to stranger-based online risks. However, they also highlight the importance of building skills to recognise and respond to unsafe behaviour within close networks. While **strong visual search skills may help some children detect risks, difficulties with impulse control and interpreting social cues can increase vulnerability** (Culina, 2024). Recent research further suggests that artificial intelligence tools, such as conversational agents, may support individuals with autism by helping them decode written social cues and formulate responses that are less literal and more socially attuned (Wankhede et al., 2024).

Box F: Children with Down syndrome (CwDS) and OSEC

Down syndrome (DS) is a genetic neurodevelopmental condition characterised by intellectual disability as well as associated physical and cognitive difficulties (Tudella et al., 2022). These developmental differences shape children's learning, communication, and social interactions, and consequently influence how they access and navigate digital environments.

CwDS are reported to be active internet users, often from a relatively young age. However, several barriers complicate their online participation. Research highlights **difficulties with navigation, a low tolerance for errors, and limitations in reading and writing skills** (Feng et al., 2010). These barriers can constrain independent use and make children more reliant on others for support, increasing exposure to risk when supervision is inconsistent. At the same time, DS is often associated with **high sociability and trust in others** (Tudella et al., 2022).

While these traits can support positive social interactions, they can also heighten **susceptibility to manipulation or inappropriate contact online** (Feng et al., 2010), like sexual grooming. Studies of youth with intellectual disabilities more broadly have noted similar patterns: while internet access enables participation, cognitive and social vulnerabilities can increase the likelihood of online harm and exploitation (Buijs et al., 2017; Chadwick, 2019). A DS expert highlighted that many CwDS need **structured, repeated teaching** to translate abstract safety rules into practice. Even when rules are understood, impulse control or limited anticipation of consequences can make it difficult to act on them in moments of social pressure. As one expert noted: *"[They] can easily be lured or influenced into engaging in inappropriate activities. Since they have a strong tendency to imitate and follow others, they may unknowingly share intimate information or images when prompted by someone. Their inclination to imitate can make them vulnerable to exploitation."*²¹

A disturbing Instagram and TikTok trend in 2025 could amplify this risk, where AI tools generated sexualised images by overlaying facial features associated with DS onto content creators. These manipulated images were often linked to monetised adult platforms such as OnlyFans. Disability advocates condemned this trend as a form of **fetishisation and exploitation of disability** for profit and worried that it puts people with DS at risk of sexual exploitation and abuse (New York Post, 2025).

²¹. Expert from the Bangladeshi Down Syndrome Society

In our study, CwDS showed distinctive patterns of online behaviour. A recurring feature was **indiscriminate clicking**. Children often engaged with digital content in an exploratory, trial-and-error fashion, pressing on links or accepting prompts without critically evaluating them. While this behaviour facilitated discovery and entertainment, it also increased the risk of exposure to unsafe, inappropriate, or explicit material. This exploratory style also affected how children responded to online interactions. Some participants described accepting friend requests or clicking on pop-up messages without pausing to assess legitimacy. Combined with their trusting dispositions, this left them particularly exposed to risks such as impersonation or unsolicited contact. Unlike CwVI, who often developed compensatory strategies to verify identity, CwDS in our sample appeared **less likely to engage in protective checking behaviours**.

The findings highlighted a paradox. The sociability associated with DS sometimes made online engagement appealing and rewarding, as children sought contact and interaction. Yet the same openness increased their exposure to risk, especially in contexts where literacy barriers or platform design limited their ability to distinguish safe from unsafe interactions. This aligns with Feng et al. (2010), who argue that the **combination of limited digital literacy and a tendency to trust can heighten vulnerability for this group**.

Cross-Cutting Themes

Disability and gender as risk amplifiers

At the child level, individual capacities related to disability type and gender shaped how risks and protections around OSEC were experienced. **Children with disabilities are not a homogenous group**; differences in cognition, communication, and emotional regulation created distinct vulnerabilities, as was shown in the above segments. Caregivers frequently **linked disability with difficulties in recognising grooming, judging trustworthiness, or understanding consent**. A parent explained, “*A healthy child of F’s age has some understanding of sexual matters, but F doesn’t really have that understanding.*”²² Having a disability itself was often described as **compounding the risk** to their online safety. Children not only had to learn to navigate the internet safely, but also to do so while negotiating the barriers created by their disability. This dual challenge meant that digital safety was both about how children used online platforms and *how their disability shaped the way they engaged with risk and protection*.

Gender further shaped perceptions of risk. Some boys with disabilities believed OSEC was primarily a girls’ problem, reducing their perceived need for protective behaviour. One boy said, for example: “*I also have a mother and a sister. What if it happens in my family?*”²³, explicitly stating that only female members of the family would be at risk. This minimisation created blind spots that perpetrators could exploit. By contrast, girls voiced particular anxiety about the misuse of photos and screenshots, reflecting their lower reported feelings of safety in our short survey (see box B). These differences align with wider evidence that girls are disproportionately subjected to online sexual harassment and reputational risks (We Protect, 2021), while also showing how boys’ denial of vulnerability can itself create a distinct pathway into exploitation.

Box G: Comparison of children with and without disabilities in Bangladesh - risk of OSEC

Both children with and without a disability highlighted similar risks: contact with strangers, misuse of photos, harmful content, and the dangers of social media (mainly Facebook, the most used platform in Bangladesh). However, the underlying mechanisms of harm differed. Children without disabilities in Bangladesh identified **peer pressure, lack of parental dialogue, and overexposure to strangers as central risks**. Many said it was **difficult to talk to parents** about online problems, fearing punishment or their issues being dismissed. Parents themselves admitted weak monitoring capacities. For children with disabilities, risks were also shaped by **accessibility barriers and cognitive differences**. CwVI described accepting requests based only on names, CwHI struggled without sign language or closed captioning support, CwDS engaged in indiscriminate clicking, and CwA relied almost exclusively on family contacts, each creating distinct pathways into exploitation risk.

²². Parent of a child with autism

²³. Boy with a visual impairment, 19 years old

Technology, Accessibility and Online Risk

The technological environment itself shaped how children with disabilities experienced both risk and protection online. Most platforms and apps were **not designed with their needs in mind, and this lack of accessibility often created new vulnerabilities**. Children in our study described barriers such as incompatibility with screen readers, the absence of captioning, or confusing layouts that did not accommodate slower processing or limited impulse control. Some also reported disability-specific behaviours, like indiscriminate clicking, which exposed them to harmful links or unsolicited contact.

These patterns reflect Chadwick's (2017, 2019) observation that **poor digital design does not only exclude, but can actively push children toward riskier coping strategies**. Our findings support this. For example, CwVI sometimes accepted friend requests based only on names when they could not access other profile information; CwHI struggled to participate safely without sign language or captioning; and CwDS often clicked indiscriminately, opening up pathways to exploitation. In each case, the way platforms were organised shaped distinct vulnerabilities, rather than offering protective scaffolding.

Technology also amplified the gap between knowledge and action. Even when children had learned basic safety rules, **digital environments often assumed levels of literacy, reasoning, or self-regulation that not all children possessed**. Persuasive design features like pop-ups or gamified requests further undermined their ability to apply protective strategies in real time. Instead of levelling the playing field, most platforms reinforced disadvantage, leaving children less able to put safety knowledge into practice.

In this sense, **technology was not a neutral backdrop, but an active force in structuring risk**. The absence of inclusive design meant that children's participation often depended on risky workarounds, while simpler and more accessible platforms were associated with greater confidence and safer practices. The design of the technological environment therefore played a decisive role in shaping children's everyday experiences of online vulnerability and protection.

Family roles, digital gaps and barriers to protection

Immediate relationships in the microsystem of children's lives, such as those with family, peers, and teachers, provided both sources of protection and points of vulnerability. Parents were often children's primary line of support, and **open communication offered a strong protective buffer**. One mother described, "*My older son [with autism] shares everything with his parents, whatever needs or problems he has... Since he doesn't have any close friends, he prefers to talk to us about his thoughts and concerns.*"²⁴ In the absence of peer networks, these close family bonds were especially significant. Similar dynamics have been reported elsewhere, where strong parent-child dialogue compensates for weak peer connections among children with disabilities (Franklin et al., 2019).

At the same time, parents repeatedly highlighted that children often had greater digital skills than their caregivers. One parent admitted, "*My child knows more than I do. He helps me.*"²⁵ This **intergenerational divide** has been observed in other contexts (Seale, 2014; Seale & Chadwick, 2017), but digital literacy being even further behind in Bangladesh creates further risk. For CwDS and CwA, co-use of online environments and guided practice could mitigate some of these risks. Yet, many parents lacked the strategies or confidence to provide this kind of support. They were rarely given adequate guidance in supporting children with disabilities online (Franklin & Smeaton, 2017; Jenaro et al., 2018).

²⁴. Parent of a child with autism

²⁵. Parent of a child with a hearing impairment

Structural pressures further weakened caregivers' protective role. One working mother described the challenge of monitoring her child's online use: “[I don't understand] how long my son is using certain apps... I'm always out. I'm a service holder, so if I keep getting angry with my child, our distance will only increase.”²⁶ Economic and time pressures shaped how families engaged with digital oversight, showing that the microsystem was deeply affected by exosystem-level conditions such as socio-economic and employment demands.

Box H: Comparison of children with and without disabilities in Bangladesh - parents' confidence in keeping their children safe online

For VOICE phase 1, a survey question asked caregivers to rate their confidence about online safety on a scale of 1 to 10. While only a small minority placed themselves at the very low end (3% scored 1–3), a clear majority perceived themselves as confident users: 27% gave themselves a moderate–high score (6–7) and 58% rated their confidence at the top end of the scale (8–10). On the surface, this suggests that most parents believe they are able to navigate the digital environment effectively. However, both the wider VOICE phase 1 data and the disability-focused study reveal a gap between perceived and actual capacity.

Despite reporting high levels of confidence, many caregivers admitted that their children were more digitally skilled than them, leaving them uncertain about how to supervise or intervene when risks emerged. Children themselves frequently echoed this, describing how parents lacked the knowledge to help or resorted to restrictive measures rather than supportive guidance. In the disability study, this gap was again confirmed: caregivers openly acknowledged that they relied on their children to manage technology, which discouraged disclosure when problems arose. **This tension between self-perceived confidence and practical competence highlights a critical barrier for online safety. Caregiver confidence, while important, does not necessarily translate into effective protection.** For both children with and without disabilities, children's greater digital expertise undermines traditional protection roles and contributes to children's heightened vulnerability to online sexual exploitation.

²⁶. Parent of a child with a hearing impairment

Isolation and Communication Barriers to Online Risk

Connection with others was an important theme for children with disabilities. The internet allowed children to stay in touch with friends and family and to feel less isolated. One caregiver noted, *“I gave it to him to talk to his friends. He talks to his friends and sees pictures, then talks to them. Now, he also plays games.”*²⁷ For children excluded from mainstream education or with limited mobility, being online provided continuity in relationships and daily sharing with peers. Finally, the internet was described as a **source of independence and inclusion**. Digital participation was not only about education or entertainment but also about being part of everyday social life. One parent said simply, *“Freedom, nowadays, everyone uses mobile phones.”*²⁸ For children with disabilities, being online carried symbolic weight: it allowed them to participate in the same practices as their peers, to explore interests, and to feel recognised as part of wider society.

However, **social isolation also shaped how children used digital spaces**. Those excluded from mainstream schools often turned to the internet to fill relational gaps, increasing their exposure to unsolicited contact. This pattern echoes Wright (2017), who found that loneliness and low social support predict vulnerability to grooming, and Normand and Sallafranque-St-Louis (2016), who show that CwA or intellectual disabilities often substitute online interactions for missing offline relationships, sometimes in risky ways.

Finally, **communication barriers** in schools compounded these challenges. In several settings, CwHI relied on peer-created sign systems instead of standardised Bangla or International Sign Language. While these improvised codes strengthened peer solidarity, they limited children’s ability to communicate with others. This limits possibilities to disclose concerns to adults or access external services. Comparable barriers have been documented in healthcare, where a lack of formal sign-language interpretation restricts access for deaf populations (Hommes et al., 2018). Our findings extend this to digital safety, showing how linguistic exclusion can directly undermine children’s capacity to report online abuse or seek protection.

Gaps in education and service

Connections between home, school, and services were weak, leaving families without clear or consistent protection pathways. Parents often assumed that schools covered digital safety education. Yet, interviews with experts revealed that teachers lacked both the training and the time to integrate online safety into already overstretched curricula. This mismatch reflects patterns identified in other contexts, where parents’ expectations of institutional responsibility are not matched by provision (Franklin & Smeaton, 2017; Kelly et al., 2023). The result is a significant blind spot: no actor fully takes ownership of equipping children with disabilities to stay safe online.

Service fragmentation reinforced these gaps. Parents and children rarely identified disability or child protection services that addressed OSEC, and NGOs and government agencies often **operated in silos without cross-referrals or joint protocols**. Families described not knowing where to turn for support or prevention, especially when children had specific communication needs such as sign language interpretation or simplified formats. This mirrors Byrne et al. (2024), who argue that the failure to integrate disability considerations into child protection systems leaves children with disabilities invisible within mainstream prevention and response frameworks.

The **absence of coordinated pathways** meant that children with disabilities were frequently reliant on their families alone, despite families themselves facing digital literacy gaps, stigma, and economic pressures. Similar concerns were raised by Caddle et al. (2023), who highlighted how social service providers often lack the mandate, skills, and resources to protect youth from online harms, particularly when disability or needs for disability-specific accommodations add an extra layer of complexity.

²⁷. Parent of a child with a hearing impairment
²⁸. Parent of a child with a hearing impairment

Cultural norms, stigma and justice

Cultural norms, laws, and national systems in the macrosystem created the backdrop against which families and children navigated online safety. These broader conditions often undermined protection and amplified risk. In this study, **disability stigma** was a clear cross-cutting theme. Respondents described widespread assumptions that children with disabilities are helpless, incapable, or unworthy of investment. These views filtered into schools, where teachers were reported to push children out of mainstream classrooms rather than adapt their teaching. Girls with disabilities were especially disadvantaged, facing stricter restrictions on internet use and harsher judgment after harm. Their underrepresentation in our sample, a result of school-based recruitment in settings where girls with disabilities are less likely to be enrolled, is itself evidence of systemic exclusion from education.

In our study, **sexuality was widely regarded as a taboo subject**, which suppressed open dialogue about consent, risk, and help-seeking. Other studies have found this as well and note that this can be reinforced by stereotypes that children with disabilities are **asexual or permanently childlike** (Murphy & Young, 2005). As a result, children with disabilities are often excluded from sexual education or only exposed to sexual education that is not tailored to them. Sexual education is viewed as unnecessary, leaving many children without the knowledge or vocabulary to recognise grooming, understand consent or seek help when confronted with risk (Stoffers et al., 2022).

Due to these taboos, **families expressed fear of reputational damage** if a child experienced online exploitation, especially for girls with disabilities. After an exercise focusing on a girl that had experienced OSEC, one child shared: *“since these things are spread on the internet, relatives or family who know about it might subject her to bullying, socially and within the family.”*²⁹ Another one added: *“She will have to face a lot of harassment. People will make insinuations, no one will understand her, and everyone will think she’s the bad one.”*³⁰ Stakeholders confirmed that anticipation of blame and gossip discouraged reporting and disclosure. One stakeholder shared, *“because she is already labeled as disabled, society talks about her in various ways. If she tells her mother about the abuse, it might lead to even worse rumors spreading around her.”*³¹ In Bangladesh specifically, similar patterns have been observed around sexual and reproductive health, where cultural taboos restrict access to information for persons with disabilities (Amin et al., 2020). Even if families wanted to report, justice systems were widely perceived as inaccessible and unsupportive. Families of children with disabilities often had to file complaints on their behalf and anticipated disbelief in their child’s ability to identify perpetrators.

²⁹. Boy with a visual impairment, 17 years old
³⁰. Girl with a visual impairment, 17 years old
³¹. School teacher for children with visual impairments

Conclusion

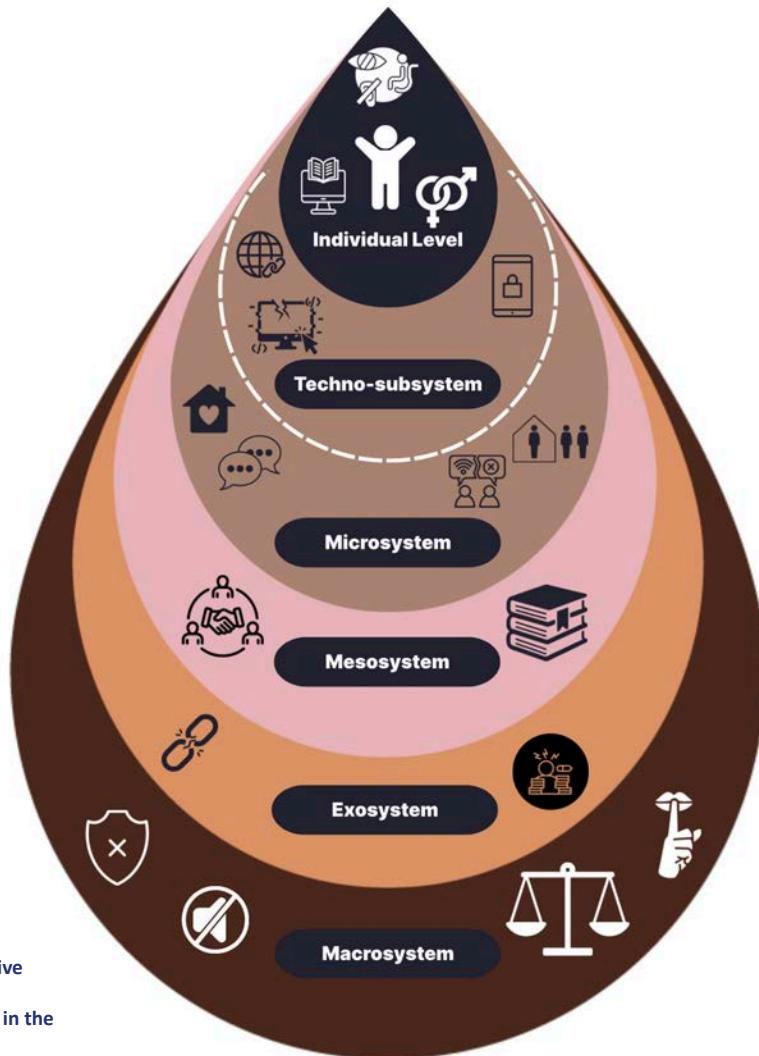
Conclusion:

Layers of Risk and Protection in Children with Disabilities' Lives

This study provides rare insights into how children with disabilities in Bangladesh experience the digital world and the risks and protections related to Online Sexual Exploitation of Children (OSEC). By centering children's voices alongside those of caregivers and stakeholders, the findings demonstrate both the internet's promise for inclusion and the structural barriers that heighten vulnerability. Findings confirm that children with disabilities are not a homogenous group online. Instead, **vulnerabilities and opportunities vary by disability type, intersect with gender and stigma, and are shaped by broader social and institutional conditions.**

The **Socio-Ecological Model** helps to make sense of these layers of risk and protection. It conceptualises child development to occur within a set of four nested systems, each influencing and interacting with the other (see Figure 1). The child is in the center (the child level), with the microsystem consisting of those directly engaging with the child. Around this is the mesosystem, capturing interrelationships between actors in the microsystem, such as parents interacting with teachers. The outer circle is the macrosystem, representing broader socio-cultural contexts in which the child is growing up. Recognising the increasingly central role of digital technology in children's lives, Johnson and Puplampu (2008) proposed the addition of the techno-subsystem within the microsystem. This includes children's interactions using digital devices, online platforms and the socio-technical architecture of the internet. As all these levels are influencing the child, the conclusions are linked to each of the levels and represented by an icon in the model below, with recommendations per level.

At the **child level**, disability was found to be a compounding vulnerability factor, although vulnerabilities were not uniform. Children with visual (CwVI) and hearing impairments (CwHI) were more active online, which increased both their awareness and their exposure to risk. For CwVI, reliance on digital tools built familiarity with online spaces but also created risks when accessibility features were absent. For CwHI, greater online use was coupled with limited access to sign language or captioning, constraining their ability to communicate concerns. Children with autism (CwA) and Children with Down syndrome (CwDS) tended to use the internet in narrower, family-based ways, seen by caregivers as protective, though literature warns this reliance can heighten vulnerability to known perpetrators. Digital literacy was shown to be strongly shaped by disability type and gender, underscoring the need to equip children with tailored skills to **recognise grooming, understand consent, and act safely online.**


In the **techno-subsystem**, children highlighted how many benefits the online world has for them in terms of connection, learning, and creativity. However, the study clearly shows that digital design is not sufficiently adapted for children with disabilities, limiting their ability to participate online fully. Inaccessible design features, such as a lack of screen-reader compatibility, absence of closed captions, or reliance on text-heavy and confusing safety tools reduced children's ability to recognise, avoid, or report abuse. **Technology companies must prioritise accessibility, strengthen protections against impersonation and harassment, and create reporting tools that every child can use.**

In the **micro-system**, immediate relationships surrounding the child offered both protection and risk. Family bonds and open communication built resilience, yet these were undermined by the inter-generational digital divide and lack of parental digital literacy, parents' work pressures (exosystem), and communication barriers between children and parents such as improved sign systems. Social isolation also pushed some children to use the internet as a substitute for missing offline relationships, potentially putting them at risk of OSEC. Accessible information and training can help parents bridge the skills gap, balance supervision with trust, and reduce children's reliance on risky online spaces to fill social isolation. **Information and resources should therefore be made more available, for instance by the government or civil society organisations. In addition, teachers should not assume children learn safety skills elsewhere. Digital literacy, online safety, and inclusive communication (including standardised sign language) must become part of daily classroom practice. Schools should also confront the stigma that sidelines children with disabilities and denies them equal access to protection.**

The linkages between families, schools, and services in the **meso-system** were fragile in Bangladesh. Parents expected schools to act, but institutions also lacked capacity or failed to adapt interventions to children with disabilities. This left children with inconsistent or absent online safety education and limited referral pathways. **Disability programmes, digital literacy initiatives, and child protection actors must work together, not in silos. NGOs also have a role in amplifying children's voices, challenging stigma, and pushing for change at policy and community levels.**

Finally, the **macro-system**, shaped by wider cultural and institutional conditions, created an environment that promoted shame and normalised silence around sexuality and disability. This trickled down to the other systems, such as the **exosystem**, where legal and service responses for children with disabilities were left fragmented. This way, the broader environment not only structured children's vulnerability to online sexual exploitation but also constrained the protective responses available to them. **To tackle this, laws and policies on child protection and online safety should explicitly address disability. Investment in inclusive education, teacher training, and accessible justice systems is urgent to break down structural barriers that leave children exposed.**

Figure 1. Risk and Protective Factors for Children with Disabilities in Bangladesh in the Socio-Ecological Model

This study marked an important first step in giving children with disabilities a voice on online safety. **More research is urgently needed that focuses on children with specific disability types and works directly with children as co-researchers.** Addressing online sexual exploitation of children with disabilities **requires action across every layer of the Socio-Ecological Model** (Bronfenbrenner, 1974). No single intervention is sufficient on its own. In addition, children themselves should be recognised as part of the solution. They are not just passive victims but active users of the internet. Their ideas, experiences, and peer networks are critical in shaping strategies that work. Children with disabilities should be co-creators of safety campaigns, awareness materials, and digital tools. The message is clear: **inclusion is protection.** Only when systems, schools, families, and platforms recognise the rights and voices of children with disabilities will the internet become a space where they can connect, learn, and thrive without fear.

Reference List

Reference List

Álvarez-Guerrero, G., Fry, D., Lu, M., & Gaitis, K. K. (2024). Online child sexual exploitation and abuse of children and adolescents with disabilities: A systematic review. *Disabilities*, 4(2), 264–276. <https://doi.org/10.3390/disabilities4020019>

Amin, A., Das, A. S., Kaiser, A., Azmi, R., Rashid, S. F., & Hasan, M. T. (2020). Documenting the challenges of conducting research on sexual and reproductive health and rights (SRHR) of persons with disabilities in a low-and-middle income country setting: lessons from Bangladesh. *BMJ Global Health*, 5(12). <https://doi.org/10.1136/bmigh-2020-002904>

Aktu, Y. (2024). Self-Esteem, Family Support and Online Grooming Risk Among Adolescents: The Role of Problematic Internet Usage. *Child Abuse Review*, 33(6). <https://doi.org/10.1002/car.70007>

Barak, A., & Sadovsky, Y (2008). Internet use and personal empowerment of hearing-impaired adolescents. *Computers in Human Behavior*, 24(5), 1802-1815. <https://doi.org/10.1016/j.chb.2008.02.007>

BBS. (2022). Report on National Survey on Persons with Disabilities (NSPD) 2021. Ministry of Planning, Government of the People's Republic of Bangladesh.

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. *Qualitative Research in Psychology*, 3(2), 77–101. <https://doi.org/10.1191/1478088706qp063oa>

Bronfenbrenner, U. (1974). Developmental research, public policy, and the ecology of childhood. *Child Development*, 45(1), 1–5. <https://doi.org/10.2307/1127743>

Byrne, J., Doolan Maher, R., & Flynn, S. (2024). Child protection and welfare risks and opportunities related to disability and internet use: Broadening current conceptualisations through critical literature review. *Children and Youth Services Review*, 157. <https://doi.org/10.1016/j.childyouth.2023.107410>

Buijs, P. C., Boot, E., Shugar, A., Fung, W. L. A., & Bassett, A. S. (2017). Internet safety issues for adolescents and adults with intellectual disabilities. *Journal of Applied Research in Intellectual Disabilities*, 30(2), 416-418. <https://doi.org/10.1111/jar.12250>

Caddle, X. V., Naher, N., Miller, Z. P., Badillo-Urquiola, K., & Wisniewski, P. J. (2023). Duty to respond: The challenges social service providers face when charged with keeping youth safe online. *Proceedings of the ACM on Human-Computer Interaction*, 7, 1-35. <https://doi.org/10.1145/3567556>

Chadwick, D. D., Wesson, C., & Fullwood, C. (2017). Internet access by people with intellectual disabilities: Inequalities and opportunities. *Future Internet*, 9(4), 88. <https://doi.org/10.3390/fi5030376>

Chadwick, D. D. (2019). Online risk for people with intellectual disabilities. *Tizard Learning Disability Review*, 24(4), 180-187. <https://doi.org/10.1108/TLDR-03-2019-0008>

Culina, A. S. (2024). Online child sexual exploitation of children - a qualitative study of in-family offences. *Jurnalul Practicilor Comunitare Pozitive*, 24(4), 109-131. <https://doi.org/10.35782/JCPP.2024.4.06>

Doolan Maher, R., Flynn, S., & Byrne, J. (2024). Shifting mindsets; a critical commentary on child protection and welfare, disability, and online risk through critical literature review. *Child Care in Practice*, 30(1), 38-53. <https://doi.org/10.1080/13575279.2024.2309097>

ECPAT International. (2016). Terminology guidelines for the protection of children from sexual exploitation and sexual abuse. ECPAT International.

ECPAT International, Eurochild, & Terre des Hommes Netherlands. (2024). Speaking up for change: Children's and caregivers' voices for safer online experiences.

Feng, J., Lazar, J., Kumin, L., & Ozok, A. (2010). Computer usage by children with down syndrome: Challenges and future research. *ACM Transactions on Accessible Computing (TACCESS)*, 2(3), 1-44. <https://doi.org/10.1145/1714458.1714460>

Ferdous, S., Chowdhury, M. S., & Hossain, R. (2015). Exploring the vulnerability of sexual abuse among the children with disabilities in Bangladesh. *Institutionalised Children Explorations and Beyond*, 2(1), 15–26. <https://doi.org/10.1177/2349300314566964>

Franklin, A., & Smeaton, E. (2017). Recognising and responding to young people with learning disabilities who experience, or are at risk of, child sexual exploitation in the UK. *Children and Youth Services Review*, 73, 474-481. <https://doi.org/10.1016/j.childyouth.2016.11.009>

Franklin, A., Toft, A., & Goff, S. (2019). Parents' and carers' views on how we can work together to prevent the sexual abuse of disabled children. NSPCC, London.

Hammond, M. (2013). Digital engagement and the 'digital divide': The socio-educational implications of digital exclusion. *Learning, Media and Technology*, 38(4), 355–363. <https://doi.org/10.1080/17439884.2013.783595>

Hommes, R. E., Borash, A. I., Hartwig, K., & DeGracia, D. (2018). American sign language interpreters perceptions of barriers to healthcare communication in deaf and hard of hearing patients. *Journal of community health*, 43(5), 956-961. <https://doi.org/10.1007/s10900-018-0511-3>

Humanity & Inclusion (2021). Access to Sexual and Reproductive Health and Rights Information and Services Perspectives of women and girls with disabilities in Uganda and Bangladesh. Humanity & Inclusion.

Hussain, M. M., & Raihan, M. M. H. (2022). Disadvantage, discrimination, and despair: Parental experiences of caring for children with disability in Bangladesh. *Asian Social Work and Policy Review*, 16(1), 80–91. <https://doi.org/10.1111/aswp.12249>

Jenaro, C., Flores, N., Cruz, M., Pérez, M. C., Vega, V., & Torres, V. A. (2018). Internet and cell phone usage patterns among young adults with intellectual disabilities. *Journal of Applied Research in Intellectual Disabilities*, 31(2), 259-272. <https://doi.org/10.1111/jar.12388>

Johnson, G. M., & Puplampu, K. P. (2008). Internet use during childhood and the ecological techno-subsystem. *Canadian Journal of Learning and Technology*, 34(1). <https://doi.org/10.21432/t2cp4t>

Kelly, B., Farrelly, N., Batool, F., Kurdi, Z., & Stanley, N. (2023). Speak out, stay safe: Including children with special educational needs and disabilities in an evaluation of an abuse prevention programme. *Child abuse review*, 32(5). <https://doi.org/10.1002/car.2816>

Lord, C., Elsabagh, M., Baird, G., & Veenstra-Vanderweele, J. (2018). Autism spectrum disorder. *Lancet*, 392(10146), 508-520. [https://doi.org/10.1016/S0140-6736\(18\)31129-2](https://doi.org/10.1016/S0140-6736(18)31129-2)

Macmillan, K., Berg, T., Just, M., & Stewart, M. (2020). Are autistic children more vulnerable online? Relating autism to online safety, child wellbeing and parental risk management. *Proceedings of the 11th Nordic Conference on Human-Computer Interaction: Shaping Experiences, Shaping Society*, 14, 1-11. <https://doi.org/10.1145/3419249.3420160>

Macmillan, K., Berg, T., Just, M., & Stewart, M. E. (2022). Online safety experiences of autistic young people: An Interpretative Phenomenological Analysis. *Research in autism spectrum disorders*, 96, 101995. <https://doi.org/10.1016/j.rasd.2022.101995>

Michalczyk, A. (2021). Hearing and hearing-impaired adolescents and the use of the internet: A report from research conducted in Poland. *Multidisciplinary Journal of School Education*, 10(2(20)), 35-56. <https://doi.org/10.35765/mjse.2021.1020.02>

Modell, S. J., & Mak, S. (2008). A preliminary assessment of police officers' knowledge and perceptions of persons with disabilities. *Intellectual and Developmental Disabilities*, 46(3), 183-189. [https://doi.org/10.1352/1934-9556\(2008\)46\[183:APAOPO\]2.0.CO;2](https://doi.org/10.1352/1934-9556(2008)46[183:APAOPO]2.0.CO;2)

Murphy, N., & Young, P. C. (2005). Sexuality in children and adolescents with disabilities. *Developmental Medicine & Child Neurology*, 47, 640-644. <https://doi.org/10.1017/S0012162205001258>

Murphy, N. A., Elias, E. R., & Council on Children with Disabilities. (2006). Sexuality of children and adolescents with developmental disabilities. *Pediatrics*, 118(1), 398-403. <https://doi.org/10.1542/peds.2006-1115>

New York Post. (2025). Hyper-sexualized AI "Down syndrome" content is going viral in latest sick trend. New York Post.

Normand, C. L., & Sallafranque-St-Louis, F. C. (2016). Cybervictimization of young people with an intellectual or developmental disability: Risks specific to sexual solicitation. *Journal of Applied Research in Intellectual Disabilities*, 29(2), 99-110. <https://doi.org/10.1111/jar.12163>

Seale, J. (2014). The role of supporters in facilitating the use of technologies by adolescents and adults with learning disabilities: a place for positive risk-taking?. *European Journal of Special Needs Education*, 29(2), 220-236. <https://doi.org/10.1080/08856257.2014.906980>

Seale, J., & Chadwick, D. (2017). How does risk mediate the ability of adolescents and adults with intellectual and developmental disabilities to live a normal life by using the Internet?. *Cyberpsychology: Journal of Psychosocial Research on Cyberspace*, 11(1). <https://doi.org/10.5817/CP2017-1-2>

Stoffers, M., Barnes, T. N., Xia, Y., & Jackson, J., (2022). A Scoping Review of School-Based Sexuality Education for Children with Disabilities. *The Journal of Special Education*, 57(2), 94-105. <https://doi.org/10.1177/00224669221134532>

Terre des Hommes Netherlands. (2023). Listen Up! Strategy summary 2023–2030. Terre des Hommes Netherlands.

Toofaninejad, E., Zavaraki, E. Z., Dawson, S., Poquest, O., & Daramadi, S. (2017). Social media use for deaf and hard of hearing students in educational settings: A systematic review of literature. *Deafness & Education International*, 19(3–4), 144–161. <https://doi.org/10.1080/14643154.2017.1373293>

Tyndall, J. (2010). The AACODS checklist. Flinders University.

Tudella, E., Weber, M. D., Da Silva, C. F. R., & Moriyama, C. H. (2022). Down Syndrome From a Neurodevelopmental Perspective. In *Oxford Research Encyclopedia of Psychology*.

Tuz, D., Altin, B., & Batuk, M. O. (2025). Do adolescents with hearing loss use social media and the internet differently from their hearing peers?. *The Journal of Laryngology & Otology*, 139(3), 217-223. <https://doi.org/10.1017/S002221512400149X>

Vatn, B. (Director). (2023). The life of Ibelin [Film]. Medieoperatørene AS; UpNorth Film.

Wankhede, N., Kale, M., Shukla, M., Nathiya, D., Kaur, P., Goyanka, B., ... & Koppula, S. (2024). Leveraging AI for the diagnosis and treatment of autism spectrum disorder: Current trends and future prospects. *Asian Journal of Psychiatry*, 101, 104241.

Wells, M., & Mitchell, K. J. (2013). Patterns of internet use and risk of online victimisation for youth with and without disabilities. *Journal of Special Education*, 48(3), 204–213. <https://doi.org/10.1177/0022466913479141>

We Protect (2021). The sexual exploitation and abuse of deaf and disabled children online. We Protect.

World Health Organization (WHO). (2022). Global report on health equity for persons with disabilities. <https://iris.who.int/bitstream/handle/10665/364834/9789240063600-eng.pdf>

World Health Organization (WHO). (2023). Blindness and vision impairment. <https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment>

World Health Organization (WHO). (2025). Deafness and hearing loss [Fact sheet]. Retrieved from <https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss>

Wright, M. F. (2017). Cyber Victimization and Depression Among Adolescents With Intellectual Disabilities and Developmental Disorders: The Moderation of Perceived Social Support. *Journal of Mental Health Research in Intellectual Disabilities*, 10(2), 126–143. <https://doi.org/10.1080/19315864.2016.1271486>

Wrzesinska, M., Tabla, K., & Stecz, P. (2016). The online behavior of pupils with visual impairment: A preliminary report. *Disability and Health Journal*, 9(4), 724–729. <https://doi.org/10.1016/j.dhjo.2016.05.006>

United Nations. (2006). Convention on the rights of persons with disabilities. <https://www.un.org/disabilities/documents/convention/convoptprot-e.pdf>

VOICE IDENTITY project 2026

Report 1: Children with Disabilities in Bangladesh

Terre des
Hommes
Netherlands

Down to Zero
Fighting sexual exploitation of children

